87 research outputs found

    Longitudinal Associations Between White Matter Microstructure and Psychiatric Symptoms in Youth

    Get PDF
    Objective: Associations between psychiatric problems and white matter (WM) microstructure have been reported in youth. Yet, a deeper understanding of this relation has been hampered by a dearth of well-powered longitudinal studies and a lack of explicit examination of the bidirectional associations between brain and behavior. We investigated the temporal directionality of WM microstructure and psychiatric symptom associations in youth. Method: In this observational study, we leveraged the world's largest single- and multi-site cohorts of neurodevelopment: the Generation R (GenR) and Adolescent Brain Cognitive Development Studies (ABCD) (total n scans = 11,400; total N = 5,700). We assessed psychiatric symptoms with the Child Behavioral Checklist as broad-band internalizing and externalizing scales, and as syndrome scales (eg, Anxious/Depressed). We quantified WM with diffusion tensor imaging (DTI), globally and at a tract level. We used cross-lagged panel models to test bidirectional associations of global and specific measures of psychopathology and WM microstructure, meta-analyzed results across cohorts, and used linear mixed-effects models for validation. Results: We did not identify any longitudinal associations of global WM microstructure with internalizing or externalizing problems across cohorts (confirmatory analyses) before, and after multiple testing corrections. We observed similar findings for longitudinal associations between tract-based microstructure with internalizing and externalizing symptoms, and for global WM microstructure with specific syndromes (exploratory analyses). Some cross-sectional associations surpassed multiple testing corrections in ABCD, but not in GenR. Conclusion: Uni- or bi-directionality of longitudinal associations between WM and psychiatric symptoms were not robustly identified. We have proposed several explanations for these findings, including interindividual differences, the use of longitudinal approaches, and smaller effects than expected. Study registration information: Bidirectionality Brain Function and Psychiatric Symptoms; https://doi.org/10.17605/OSF.IO/PNY92</p

    Intrauterine Exposure to Antidepressants or Maternal Depressive Symptoms and Offspring Brain White Matter Trajectories From Late Childhood to Adolescence

    Get PDF
    Background: During pregnancy, both selective serotonin reuptake inhibitor (SSRI) exposure and maternal depression have been associated with poor offspring neurodevelopmental outcomes. In a population-based cohort, we investigated the association between intrauterine exposure to SSRIs and depressive symptoms and offspring white matter development from childhood to adolescence. Methods: Self-reported SSRI use was verified by pharmacy records. In midpregnancy, women reported on depressive symptoms using the Brief Symptom Inventory. Using diffusion tensor imaging, offspring white matter microstructure, including whole-brain and tract-specific fractional anisotropy (FA) and mean diffusivity, was measured at 3 assessments between ages 7 to 15 years. The participants were divided into 4 groups: prenatal SSRI exposure (n = 37 with 60 scans), prenatal depression exposure (n = 229 with 367 scans), SSRI use before pregnancy (n = 72 with 95 scans), and reference (n = 2640 with 4030 scans). Results: Intrauterine exposure to SSRIs and depressive symptoms were associated with lower FA in the whole-brain and the forceps minor at 7 years. Exposure to higher prenatal depressive symptom scores was associated with lower FA in the uncinate fasciculus, cingulum bundle, superior and inferior longitudinal fasciculi, and corticospinal tracts. From ages 7 to 15 years, children exposed to prenatal depressive symptoms showed a faster increase in FA in these white matter tracts. Prenatal SSRI exposure was not related to white matter microstructure growth over and above exposure to depressive symptoms.Conclusions: These results suggest that prenatal exposure to maternal depressive symptoms was negatively associated with white matter microstructure in childhood, but these differences attenuated during development, suggesting catch-up growth.</p

    Genetic associations with childhood brain growth, defined in two longitudinal cohorts

    Get PDF
    Genome-wide association studies (GWASs) are unraveling the genetics of adult brain neuroanatomy as measured by cross-sectional anatomic magnetic resonance imaging (aMRI). However, the genetic mechanisms that shape childhood brain development are, as yet, largely unexplored. In this study we identify common genetic variants associated with childhood brain development as defined by longitudinal aMRI. Genome-wide single nucleotide polymorphism (SNP) data were determined in two cohorts: one enriched for attention-deficit/hyperactivity disorder (ADHD) (LONG cohort: 458 participants; 119 with ADHD) and the other from a population-based cohort (Generation R: 257 participants). The growth of the brain's major regions (cerebral cortex, white matter, basal ganglia, and cerebellum) and one region of interest (the right lateral prefrontal cortex) were defined on all individuals from two aMRIs, and a GWAS and a pathway analysis were performed. In addition, association between polygenic risk for ADHD and brain growth was determined for the LONG cohort. For white matter growth, GWAS meta-analysis identified a genome-wide significant intergenic SNP (rs12386571, P = 9.09 × 10-9 ), near AKR1B10. This gene is part of the aldo-keto reductase superfamily and shows neural expression. No enrichment of neural pathways was detected and polygenic risk for ADHD was not associated with the brain growth phenotypes in the LONG cohort that was enriched for the diagnosis of ADHD. The study illustrates the use of a novel brain growth phenotype defined in vivo for further study

    Levels of Physical Activity at Age 10 Years and Brain Morphology Changes from Ages 10 to 14 Years

    Get PDF
    Importance: Physical activity may promote healthy brain development in children, but previous research was predominantly cross-sectional and included small samples, providing limited knowledge. Objective:To investigate the longitudinal associations of physical activity with brain morphology changes. Design, Setting, and Participants: A 4-year longitudinal population-based cohort study in Rotterdam, the Netherlands, embedded in Generation R, a cohort from fetal life onward. From the women enrolled during pregnancy, children who had repeated measures of brain structure at ages 10 (range 8 to 12) years and 14 (range 13 to 15) years were included. Data were collected from March 2013 to November 2015 (baseline) and from October 2016 to January 2020 (follow-up). Data were analyzed from April to December 2022. Exposure: At age 10 years, both the child and their primary caregiver reported the child's levels of physical activity with regard to sport participation, outdoor play, and total physical activity. Primary analyses were based on an average multi-informant report. Main outcomes and measures: Brain morphology was quantified by magnetic resonance imaging. Hypothesized regions of interest were the bilateral amygdala and hippocampal volumes. Global brain measures were studied to test the specificity of the hypothesis. Results: Data were available for 1088 children (566 girls [52%]; 693 [64%] Dutch). Their mean (SD) age at baseline was 10.1 (0.6) years. For amygdala volume change, positive associations with multi-informant reports of total physical activity (β = 2.6; 95% CI, 0.3-4.9) were found. Total physical activity was associated with hippocampal volume increases only when reported by the child (β = 3.1; 95% CI, 0.4-5.8). No robust associations with global brain measures were found. Conclusions and relevance: In this cohort study of 1088 children, more physical activity at 10 years was consistently associated with an increase in amygdala volume in children aged 10 to 14 years. Physical activity and increases in hippocampal volume were found using child reports of physical activity only. These findings suggest physical activity in late childhood was prospectively associated with volumetric changes in specific subcortical structures, but not to global brain development, from late childhood to early adolescence. These findings may inform the design of future public health interventions to best facilitate neurodevelopment with physical activity..</p

    Physical symptoms and brain morphology:a population neuroimaging study in 12,286 pre-adolescents

    Get PDF
    Physical symptoms, also known as somatic symptoms, are those for which medical examinations do not reveal a sufficient underlying root cause (e.g., pain and fatigue). The extant literature of the neurobiological underpinnings of physical symptoms is largely inconsistent and primarily comprises of (clinical) case-control studies with small sample sizes. In this cross-sectional study, we studied the association between dimensionally measured physical symptoms and brain morphology in pre-adolescents from two population-based cohorts; the Generation R Study (n = 2649, 10.1 ± 0.6 years old) and ABCD Study (n = 9637, 9.9 ± 0.6 years old). Physical symptoms were evaluated using continuous scores from the somatic complaints syndrome scale from the parent-reported Child Behavior Checklist (CBCL). High‐resolution structural magnetic resonance imaging (MRI) was collected using 3-Tesla MRI systems. Linear regression models were fitted for global brain metrics (cortical and subcortical grey matter and total white matter volume) and surface-based vertex-wise measures (surface area and cortical thickness). Results were meta-analysed. Symptoms of anxiety/depression were studied as a contrasting comorbidity. In the meta-analyses across cohorts, we found negative associations between physical symptoms and surface area in the (i) left hemisphere; in the lateral orbitofrontal cortex and pars triangularis and (ii) right hemisphere; in the pars triangularis, the pars orbitalis, insula, middle temporal gyrus and caudal anterior cingulate cortex. However, only a subset of regions (left lateral orbitofrontal cortex and right pars triangularis) were specifically associated with physical symptoms, while others were also related to symptoms of anxiety/depression. No significant associations were observed for cortical thickness. This study in preadolescents, the most representative and well-powered to date, showed that more physical symptoms are modestly related to less surface area of the prefrontal cortex mostly. While these effects are subtle, future prospective research is warranted to understand the longitudinal relationship of physical symptoms and brain changes over time. Particularly, to elucidate whether physical symptoms are a potential cause or consequence of distinct neurodevelopmental trajectories.</p

    Klotho gene polymorphism, brain structure and cognition in early-life development

    Get PDF
    Open access via Springer Compact Agreement Acknowledgements We thank the PING study participants who contributed to the research. The study was supported by the University of Aberdeen Development Trust and by the SINAPSE (Scottish Imaging Network: A Platform for Scientific Excellence) Postdoctoral and Early Career Researcher Exchanges funding. The PING Study (National Institutes of Health Grant RC2DA029475) funded data collection and sharing for this project. PING is funded by the National Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health & Human Development. PING data are disseminated by the PING Coordinating Center at the Center for Human Development, University of California, San Diego. Data used in preparation of this article were obtained from the Pediatric Imaging, Neurocognition and Genetics Study (PING) database (http://ping.chd.ucsd.edu/). As such, the investigators within PING contributed to the design and implementation of PING and/or provided data but did not participate in analysis or writing of this report. A complete listing of PING investigators can be found at http://ping.chd.ucsd.edu/index.php?option=com_content&view=article&id=104&Itemid=134. The Generation R Study is conducted by the Erasmus Medical Center in close collaboration with the School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterdam and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. Neuroimaging was supported by the Netherlands Organization for Health Research and Development (ZonMw) TOP project number 91211021. We gratefully acknowledge the contribution of children and parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. We would like to thank Karol Estrada, Dr. Tobias A. Knoch, Anis Abuseiris, Luc V. de Zeeuw, and Rob de Graaf, for their help in creating GRIMP, BigGRID, MediGRID, and Services@MediGRID/D-Grid, [funded by the German Bundesministerium fuer Forschung und Technology; grants 01 AK 803 A-H, 01 IG 07015 G] for access to their grid computing resources. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Manoushka Ganesh, Lizbeth Herrera and Marjolein Peters for their help in creating, managing and QC of the GWAS database. The general design of Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, ZonMw, the Netherlands Organisation for Scientific Research (NWO), the Ministry of Health, Welfare and Sport and the Ministry of Youth and Families.Peer reviewedPublisher PD

    Exploring the longitudinal associations of functional network connectivity and psychiatric symptom changes in youth

    Get PDF
    Background: Functional connectivity has been associated with psychiatric problems, both in children and adults, but inconsistencies are present across studies. Prior research has mostly focused on small clinical samples with cross-sectional designs. Methods: We adopted a longitudinal design with repeated assessments to investigate associations between functional network connectivity (FNC) and psychiatric problems in youth (9- to 17-year-olds, two time points) from the general population. The largest single-site study of pediatric neurodevelopment was used: Generation R (N = 3,131 with data at either time point). Psychiatric symptoms were measured with the Child Behavioral Checklist as broadband internalizing and externalizing problems, and its eight specific syndrome scales (e.g., anxious-depressed). FNC was assessed with two complementary approaches. First, static FNC (sFNC) was measured with graph theory-based metrics. Second, dynamic FNC (dFNC), where connectivity is allowed to vary over time, was summarized into 5 states that participants spent time in. Cross-lagged panel models were used to investigate the longitudinal bidirectional relationships of sFNC with internalizing and externalizing problems. Similar cross-lagged panel models were run for dFNC. Results: Small longitudinal relationships between dFNC and certain syndrome scales were observed, especially for baseline syndrome scales (i.e., rule-breaking, somatic complaints, thought problems, and attention problems) predicting connectivity changes. However, no association between any of the psychiatric problems (broadband and syndrome scales) with either measure of FNC survived correction for multiple testing. Conclusion: We found no or very modest evidence for longitudinal associations between psychiatric problems with dynamic and static FNC in this population-based sample. Differences in findings may stem from the population drawn, study design, developmental timing, and sample sizes.</p

    White Matter Microstructure and the General Psychopathology Factor in Children

    Get PDF
    Objective: Co-occurrence of behavioral and emotional problems in childhood is widespread, and previous studies have suggested that this reflects vulnerability to experience a range of psychiatric problems, often termed a general psychopathology factor. However, the neurobiological substrate of this general factor is not well understood. We tested the hypothesis that lower overall white matter microstructure is associated with higher levels of the general psychopathology factor in children and less with specific factors. Method: Global white matter microstructure at age 10 years was related to general and specific psychopathology factors. These factors were estimated using a latent bifactor model with multiple informants and instruments between ages 6 and 10 years in 3,030 children from the population-based birth cohort Generation R. The association of global white matter microstructure and the psychopathology factors was examined with a structural equation model adjusted for sex, age at scan, age at psychopathology assessment, parental education/income, and genetic ancestry. Results: A 1-SD increase of the global white matter factor was associated with a β = −0.07SD (standard error [SE] = 0.02, p < .01) decrease in general psychopathology. In contrast, a 1-SD increase of white matter microstructure predicted an increase of β = +0.07 SD (SE = 0.03, p < .01) specific externalizing factor levels. No association was found with the specific internalizing and specific attention factor. Conclusion: The results suggest that general psychopathology in childhood is related to white matter structure across the brain and not only to specific tracts. Taking into account general psychopathology may also help reveal neurobiological mechanisms behind specific symptoms that are otherwise obscured by comorbidity
    corecore